O que são monômios ?
Um monômio é uma expressão algébrica racional inteira que representa um produto de números reais.
- Um monômio distinguimos em duas patês:
1) Um parte numérica (constante) que também é chamada de coeficiente .
2) Uma parte literal (variável)
TERMOS SEMELHANTES
Dois termos que têm parte literais iguais, ou que não têm parte literal, são denominados termos semelhantes.
São semelhantes , por exemplo:
1) 6ab e -2ab
2) 3x e 7x
3) 4abc e -2abc
4) 1/4x⁴ e 12x⁴
Observe que:
5x²y³ e 5x³y² não são semelhantes
-3x²y³ e 4y³x² são semelhanteAdição e subtração
Eliminam-se os parênteses e reduzem-se os termos semelhantes.
Exemplos 1
(+8x) + (-5x)
8x – 5x
3x
Exemplo 2
(-7x ) – ( +x)
-7x – x
-8x
Exemplo 3
(2/3x) – (-1/2x)
2/3x + 1/2x
4x/6 + 3x/6
7x/6
EXERCÍCIOS
1) Efetue:
a) (+7x) + (-3x) = (R: 4x)
b) (-8x) + (+11x) = (R: 3x )
c) (-2y) + (-3y) = (R: -5y)
d) (-2m) + (-m) = (R: -3m)
e) (+5a²) + (-3a²) = (R: 2a²)
f) (+5x) + (-5x) = (R: 0)
g) (+6x) + (-4x) = (R: 2x)
h) (-6n) + (+n) = (R: -4n)
i) (+8x) – ( -3x) = (R: 11x)
j) (-5x) – (-11x) = (R: 6x)
k) (-6y) – (-y) = (R: -5y)
l) (+7y) – (+7y) = (R: 0 )
m) (-3x) – (+4x) = (R -7x)
n) (-6x) – ( -x) = (R: -5x)
o) (+2y) – (+5y) = (R: -3y )
p) (-m) –(-m) = (R: 0 )
2) Efetue :
a) (+ 3xy) – (-xy) + (xy) = (R: 5xy)
b) (+ 15x) – (-3x) – (+7x) + (-2x) = (R: 9x )
c) (-9y) –( +3y) – (+y) + (-2y) = (R: -15y)
d) (3n) + (-8n) + (+4n) – (-5n) – (-n) = (R: 5n)
3) Efetue:
a) (+1/2x) + (-1/3x) = (R: 1x/6)
b) ( -2/5x) + (-2/3x) = (R: -16x/15)
c) (-7/2y) + (+1/4y) = (R: -13y/4)
d) (+2m) +( -3/4m) = (R: 5m/4)
e) (+2/3x) - ( -3/2x) = (R: 13x/6)
f) (-3/4y) – (+1/2y) = (R: -5y/4)
g) (+2/5m) – (+2/3m) = (-4m/15)
h) (-3x) –(-2/5x) = (R: 13x/5)
4) Calcule os monômios
a) 2x + 3x = (R: 5x)
b) 6y – 4y + 5y = (R: 7y)
c) 3a – 6a – a = (R: -4a)
d) 2/5 x²y 3/2 x²y = (R: 19/10 x²y)
e) 1/2ab – 3ab = (R: 5/2ab)
f) 7b + 4b – 6b = (R: 5b)
g) 3/2 y – 2y + 7/3 y = (R: 11/6Y)
h) 3/5 x + x = (R: 8/5x)
i) 8xy – 4xy + 4xy – 8xy = (R: 0xy)
j) 3/7 x + 41/8 x = ( R: 311/56x)
k) -x² + 2/5 x² = (R: -3/5 x²)
l) -3p -7p + 18p = (R: 8p)
MULTIPLICAÇÃO
O produto de dois monômios, basta multiplicarmos coeficiente com coeficiente e parte literal com parte literal. E quanto multiplicamos as partes literais devemos usar a propriedade da potencia que diz para conservar a base e somar os expoentes.
Exemplo
Vamos Calcular:(3x²) . (2x⁵) =
( 3 . x . x) . ( 2 .x.x.x.x.x.)=
3 .2 x.x.x.x.x.x.x =
6x⁷
Conclusão: multiplicam-se os coeficientes e as partes literais
Exemplos
a) (3x⁴) . (-5x³) = -15x⁷
b) (-4x) . (+3x) = -12x²
c) (-2y⁵) . (-7y ) = 14y⁶
d) (3x) . ( 2y) = 6xy
EXERCÍCIOS
1) Calcule:
a) (+5x) . (-4x²) = (R: -20x³)
b) (-2x) . (+3x) = (R: -6x²)
c) (+5x) . (+4x) = (R: 20x²)
d) (-n) . (+ 6n) = (R: -6n²)
e) (-6x²) . (+3x²) = (R: -18x³)
f) (-2y) . (5y) = (R: -10y²)
g) (+4x²) . (+5x³) = (R: 20x⁵)
h) (2y) . (-7x) = (R: -14yx)
i) (-2x) . (-3y) = (R: 6xy)
j) (+3x) . (-5y) = (R: -15xy)
k) (-3xy) . (-2x) = (R: 6x²y)
2) Calcule
a) (2xb) . (4x) = (R: 8x²b)
b) (-5x²) . (+5xy²) = ( R: -25 x³y²)
c) (-5) . (+15x²y) = (R: -75 x²y)
d) (-9X²Y) . (-5XY²) = (R: 45x³y³)
e) (+3X²Y) . (-XY) = ( R: -3x³y²)
f) (X²Y³) . (5X³Y²) = (R: 5x⁵y⁵)
g) (-3x) . (+2xy) . ( -x³) = (R: 6x⁵y)
h) (-x³) . (5yx²) . (2y³) = (R: -10x⁵y³)
i) (-xy) . (-xy) . (-xy) = (R: -x³y³)
j) (-xm) . ( x²m) . (3m) = (R: -3x³m³)
3) Calcule:
a) (1/2x) . (3/5x³) = (R: 3/10x⁴)
b) (-2/3x) . (+3/4y) = (R: -6/12xy ou -1/2xy)
c) (-1/3x²) . (4/3x³) = (R: -4/6x⁵ ou -2/3x⁵)
d) (-x²/3) . (-x/2) = (R: x³/6)
e) (-2x/3) . (6x/5) = (R: -12/15x²)
f) (-10xy) . ( xy²/3) =
DIVISÃO
A divisão de dois monômios, basta dividirmos o coeficiente com coeficiente e parte literal com parte literal. E quanto dividimos as partes literais devemos usar a propriedade da potencia que diz para conservar a base e subtrair os expoentes.
Vamos calcula:
(15x⁶) : (5x²) =
15 . x . x . x. x. x. x : 3 . x . x
3 . x . x . x . x
3x⁴
Conclusão: dividem-se os coeficientes e as partes literais
Exemplos
a) (21x⁶) : (-7x⁴) = -3x²
b) (-10x³) : (-2x²) = +5x
c) (-15x³y) : ( -5xy) = +3x²
EXERCÍCIOS
1) Calcule os quocientes:
a) (15x⁶) : (3x²) = (R: 5x⁴)
b) (16x⁴) : (8x) = (R: 2 x³)
c) (-30x⁵) : (+3x³) = (R: -10)
d) (+8x⁶) : (-2x⁴) = (R: -4x²)
e) (-10y⁵) : (-2y) = (R: 5y⁴)
f) (-35x⁷) : ( +5x³) = (R: -7x⁴)
g) (+15x⁸) : (-3x²) = (R: -5x⁷)
h) (-8x) : (-8x ) = (R: 1)
i) (-14x³) : (+2x²) = (R: -7x)
j) (-10x³y) : (+5x²) = (R: -2xy)
k) (+6x²y) : (-2xy) = (R: -3x)
l) (-7abc) : (-ab) = (R: 7c)
m) (15x⁷) : ( 6x⁵) =
n) (20a³b²) : ( 15ab²) =
o) (+1/3x³) : (-1/5x²) =
p) (-4/5x⁵y) : ( -4/3x³y) =
q) (-2xy²) : ( xy/4) = (R: -8y)
2) Calcule
a) (10xy) : (5x) = ( R: 2y)
b) (x³y²) : (2xy) = (R: 1/2 x²y)
c) (-3xz²) : (-3xz) = (R: z)
d) (-14m⁶n³) : ( 7m⁴n²) = (R: -2m²n)
e) (1/2a³b²) : (-a³b²) = (R: -1/2)
f) (a⁴b³) : (5a³b) = (R: 1/5 ab²)
g) (-3x⁵y³) : (-4x²y) = (R: 3/4x³y²)
h) (-2/3 x⁴z⁴) : 5/3 z⁴ = (R: -2/5 x⁴)
POTENCIAÇÃO
Para elevarmos um monômio a uma potência devemos elevar cada fator desse monômio a essa potencia. Na pratica elevamos elevamos o coeficiente numérico à potencia e multiplicamos cada um dos epoentes das variáveis pelo expoente da potencia.
Vamos calcular:
(5a³m)² = 25 a⁶m
Conclusão : Para elevarmos um monômio a uma potência, elevamos cada um de seus fatores a essa potência.
Exemplos
1) (-7x)² = 49 x²
2) (-3x²y)³ = -27x⁶y³
3) (- 1/4x⁴)² = 1/16x⁸
EXERCÍCIOS
1) Calcule:
a) ( + 3x²)² =
b) (-8x⁴)² =
c) (2x⁵)³ =
d) (3y²)³ =
e) (-y²)⁴ =
f) (-mn)⁴ =
g) (2xy²)⁴ =
h) (-4x²b)² =
i) (-3y²)³ =
j) (-6m³)² =
k) (-3x³y⁴)⁴ =
l) (-2x²m³)³ =
2) Calcule:
a) (x²/2)³ =
b) (-x²/4)² =
c) (-1/2y)² =
d) (+2/3x)³ =
e) (-3/4m)² =
f) (-5/6m³)² =
RAIZ QUADRADA
Para extraimos a raiz de um monômio efetuamos a raiz de seu coeficiente numérico e a raiz de seus fatores. Na pratica isso equivale a dividirmos cada expoente pelo indice da raiz.
Aplicando a definição de raiz quadrada, temos:
a) √49x² = 7x, pois (7x)² = 49x²
b) √25x⁶ = 5x³, pois (5x³)² = 25x⁶
Conclusão: para extrair a raiz quadrada de um monômio, extraímos a raiz quadrada do coeficiente e dividimos o expoente de cada variável por 2
Exemplos:
a) √16x⁶ = 4x³
b) √64x⁴b² = 8x²b
Obs: Estamos admitindo que os resultados obtidos não assumam valores numéricos negativos
EXERCÍCIOS
1) Calcule
a) √4x⁶ =
b) √x²y⁴ =
c) √36c⁴ =
d) √81m² =
e) √25x¹² =
f) √49m¹⁰ =
g) √9xb² =
h) √9x²y² =
i) √16x⁸ =
2) Calcule:
a) √x²/49 =
b) √x²/25 =
c) √4/9x⁸ =
d) √49/64x¹⁰ =
e) √25/81yx⁶ =
f) √121/100 x²m⁸ =
Nenhum comentário:
Postar um comentário